Inverse-Free Extreme Learning Machine With Optimal Information Updating
نویسندگان
چکیده
منابع مشابه
Extreme Learning Machine with Adaptive Growth of Hidden Nodes and Incremental Updating of Output Weights
The extreme learning machines (ELMs) have been proposed for generalized single-hidden-layer feedforward networks (SLFNs) which need not be neuron alike and perform well in both regression and classification applications. An active topic in ELMs is how to automatically determine network architectures for given applications. In this paper, we propose an extreme learning machine with adaptive grow...
متن کاملExtreme Learning Machine
Slow speed of feedforward neural networks has been hampering their growth for past decades. Unlike traditional algorithms extreme learning machine (ELM) [5][6] for single hidden layer feedforward network (SLFN) chooses input weight and hidden biases randomly and determines the output weight through linear algebraic manipulations. We propose ELM as an auto associative neural network (AANN) and i...
متن کاملOne-Class Classification with Extreme Learning Machine
One-class classification problemhas been investigated thoroughly for past decades. Among one of themost effective neural network approaches for one-class classification, autoencoder has been successfully applied for many applications. However, this classifier relies on traditional learning algorithms such as backpropagation to train the network, which is quite time-consuming. To tackle the slow...
متن کاملExtreme Learning Machine with Local Connections
This paper is concerned with the sparsification of the input-hidden weights of ELM (Extreme Learning Machine). For ordinary feedforward neural networks, the sparsification is usually done by introducing certain regularization technique into the learning process of the network. But this strategy can not be applied for ELM, since the input-hidden weights of ELM are supposed to be randomly chosen ...
متن کاملExtending Extreme Learning Machine with Combination Layer
We consider the Extreme Learning Machine model for accurate regression estimation and the related problem of selecting the appropriate number of neurons for the model. Selection strategies that choose “the best” model from a set of candidate network structures neglect the issues of model selection uncertainty. To alleviate the problem, we propose to remove this selection phase with a combinatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Cybernetics
سال: 2016
ISSN: 2168-2267,2168-2275
DOI: 10.1109/tcyb.2015.2434841